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Abstract� We study the detection of very weak time�periodic magnetic signals via a
double�junction �dc� Superconducting Quantum Interference Device �SQUID�� The device	
represented by two coupled nonlinear di�erential equations for the quantum mechanical junc�
tion phase di�erences	 admits long�time static or oscillatory solutions	 the transition between
them being easily controlled by experimentally accessible parameters� Gain is maximal when
the device is tuned to the onset of the oscillatory solutions� i�e�	 when the minima in the
�D potential function disappear� We concentrate on the SQUID dynamics near this critical
point and compute the oscillation frequency via a center manifold reduction of the full �D
dynamics� Knowing this frequency permits its exploitation as a detection�classi�cation tool
in magnetic remote sensing applications�
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� Introduction

Superconducting Quantum Interference Devices �SQUIDs� ��� hold out the most prom�
ise for use in a variety of sensitive magnetic remote sensing applications including
magneto�telluric exploration� biomagnetic sensing� NQR scanning for explosives�drugs�
and communications applications	 They are the most sensitive detectors of magnetic

elds� however� they are quite vulnerable to noise� which can arise from a variety
of sources� environmental� thermal� or noise coupled in from the biasing and read�
out electronics	 Operated in the conventional 
ux�locked mode wherein the device is
kept locked to an operating point in the linear regime of its transfer characteristic via
feedback electronics� a very small amount of noise is often su�cient to lose the oper�
ating point � � � the so�called �slew�rate� problem	 Recently� a series of experiments ���
and supporting calculations ��� �� have demonstrated that operating the SQUID as a
free�running nonlinear dynamic device can enhance the noise tolerance if nonlinear
phenomena are carefully used to alleviate noise problems	 The objective in this case
is not necessarily an enhancement of the SQUID�s sensitivity� rather� it could be an
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e�ective lowering of the noise 
oor of the readout system� resulting in an increase in
the entire system�s performance as re
ected by its SNR� signal detection probability�
and dynamic range	 The above�mentioned research has exploited the SQUID�s nonlin�
ear transfer characteristic �see ��� for an excellent overview� in an attempt to enhance
the noise�tolerance of SQUIDs� however� we wish to point out at least one additional
novel use of SQUIDs ��� in the still�developing 
eld of 
uctuation�enhanced transport	

Signal detection and ampli
cation in the single�junction �rf� SQUID has been ex�
plored in detail ��� ��	 Here� we consider the dynamics of the dc SQUID� a super�
conducting loop broken by two Josephson Junctions �symmetrically placed for conve�
nience�	 The dynamics of this device are well�known �see e	g	 ��� ��� and we digress
only brie
y to write down the relevant equations without derivation	 The variables of
interest are the Schr�odinger phase di�erences ���� associated with the two �assumed
identical� junctions� in terms of which we can express the experimentally measureable
circulating current Is in the SQUID loop�

�
Is
I�

� �� � �� � ��
�e

��

� ���

where � � ��LI���� is the nonlinearity parameter� I� the junction critical current�
L the loop inductance� and �e an external applied magnetic 
ux� �� � h��e being
the 
ux quantum	 In the absence of noise and a target magnetic 
ux� we can use the
RSJ model to write down equations for the currents in the two arms of the SQUID via
a lumped circuit representation ��� ��� when transformed via the Josephson relations
��i � �eVi� h linking the voltage and the quantum phase di�erence across the junction
i� these equations take the form�

� ��� �
Ib
�
� Is � I� sin ��� � ��� �

Ib
�
! Is � I� sin ��� ���

where � �  h��eR� R being the normal state resistance of the junctions	 The dc bias
current Ib is applied symmetrically to the loop	 Rescaling the time by ��I�� one can
write the above in the form ��i � �riU���� ��� with the �D potential function de
ned
as

U���� ��� � � cos �� � cos �� � J��� ! ��� !
�

��
��� � �� � ���ex�

�� ���

where we introduce the dimensionless bias current J � Ib��I� and normalized applied

ux �ex � �e���	

The �D potential function ��� has interesting properties	 First� note that the ex�

ternally adjustable bias parameters �ex and J control the symmetry and well�depth�
respectively	 Adjusting these parameters leads to a transition from a regime charac�
terized by a multistable potential and long�time static solutions for the phase angles�
to one wherein pairs of minima and saddles have coalesced to yield a potential with
points of in
ection� followed by �upon further adjusting the bias parameters� a poten�
tial with no minima	 This latter regime� in which ��� admits spontaneous oscillatory
solutions� is often referred to as the �running regime�	

To make the physics of the near�critical dynamics in the running regime clearer�
we 
rst give a brief overview of the long�time SQUID dynamics in the static regime�
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in the absence of external signals and noise sources	 The condition ��i � � immediately
leads to the pair of phase equations�

�� � �� � ���e

��

! ��sin �� � J� � �

�� � �� � ���e

��

� ��sin �� � J� � ��

���

In addition� the phase continuity relation�

�� � �� � ��n� ��
�

��

� ���

n being an integer� links the phases� and the loop total 
ux is related to the circulating
current by � � �e ! LIs	 Adding and subtracting the set ���� we are then led
immediately to the current conservation relations for the loop�

�J � sin �� ! sin ��� �Is � I��sin �� � sin ���� ���

Further� the Is equation can be manipulated to yield a transcendental equation for
the circulating current�

Is
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� � sin

�
��ex !

�Is
�I�

�
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�
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�
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�
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Equation ��� may be solved numerically for the circulating current� the ensuing transfer
characteristic �TC� is periodic in the applied 
ux �ex and possibly hysteretic� with
the hysteresis loop width controlled by the bias current J 	 For J � � one obtains
hysteresis for any nonlinearity �� for � � J � �� hysteresis occurs over some range of
�	 Hysteresis in the output TC may be linked to a multistable potential function U 	
However� in practice the SQUID is an extremely fast device �time�constant � � �����

sec� so that the potential description is merely a mathematical convenience	 The
switching time between wells is fast enough that the device is almost an ideal two�
state device� so that many realistic external noise sources �other than purely thermal
noise� must be treated as being correlated �i	e	 the noise bandwidth is smaller than
the SQUID bandwidth ����	 In the superconducting regime the SQUID dynamics ���
may be reduced to a �D form� in terms of the normalized 
ux variable x � ����

�using the Ib current conservation relation��

�s �x � �x��ex � �

��
sin��x� cos�Z�� ���

where we set �s � ����I� and Z � �x ! sin���J ! �������x � �ex��	 Equating the
right hand side of ��� to zero and solving �numerically� for the x vs	 �ex TC yields a
curve identical to that obtained from the transcendental form ���� after we express Is
in terms of x	 Note that� in this regime� the potential ��� can readily be transformed
into a single�variable potential U�x�� whose derivative yields �up to a multiplicative
constant� the negative of the right hand side of ���� as expected	 Note� 
nally� that for
any set of SQUID and bias parameters ��� J � �ex�� the numbers and locations of the
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potential minima can be obtained via the zeros of the J current conservation relation
���� with one of the angles eliminated as a variable via ���	 The zeros can also be
obtained by looking at the intersections of the curves ������ and ������� given by ���
and plotted on the same axes ����	

We reiterate that the formalism in this section� in particular the conservation
relations ���� are valid strictly when the potential U admits of stable minima� i	e	
��i � �	 It is clear that the externally applied bias current J can be increased beyond
the limiting value J � � past which the conservation relations ��� break down	 At
this point the potential U is no longer multistable� and the long time solutions for the
phase angles are not static � ��i �� ��	 In this �voltage state�� an additional �normal�
ohmic current must be added to the J conservation relation for it to be satis
ed	 The
critical point at which this occurs has been calculated ��� in terms of the applied bias
current and 
ux	 We now consider this operating regime in greater detail	

� Oscillatory Solutions in the Running Regime

A numerical solution of the SQUID dynamics ��� for di�erent bias parameters leads to
a computation of the bias current vs	 dc bias 
ux TC for 
xed J 	 Figure � shows the
TC� with the transition to non�hysteretic behavior clearly visible	 Experiments ��� have
shown that the device response� measured as an output signal�to�noise ratio �SNR�
at the frequency of a weak applied sinusoidal signal� is maximal in the transition
regime from static to oscillatory �or running� solutions	 This behavior is also evident
in theoretically computed ��� SNR response curves� in the presence of a noise 
oor�
shown in Fig	 �	 From a computational standpoint� it is certainly more convenient
to work in the non�hysteretic regime wherein the output variable �in this case� the
circulating current Is� is single�valued in the input	 Then� one simply constructs the
TC ���� and applies the signal and noise to the input ���	 In the hysteretic regime�
on the other hand� one must integrate the coupled equations ��� and compute power
spectra by averaging time series� this can prove cumbersome in some cases� and is
certainly dependent on computing power	

The details of computation of the output SNR �shown in Fig	 �� will not be re�
produced here ���	 We 
nd remarkably good agreement with the experimental results�
it is particularly gratifying to be able to �tune� the SQUID �i	e	 adjust the TC� to
yield optimal performance via adjustments of J and �ex� since the third parameter �
cannot be easily changed after fabrication	

��� Spontaneous Oscillation Frequency� Near the Singular Point

We now turn our attention to a discussion of the voltage regime� speci
cally the nature
of the solutions to the dynamics ��� in this regime	 Other researchers ���� have inves�
tigated the oscillatory regime via a computation of the voltage across the Josephson
junctions� the Josephson relations relate this voltage �which can be experimentally
measured� to the frequency of the oscillations	 In our work ������ however� we consider
the screening current Is �replaced by its time�average in the oscillatory regime �����
as the variable of interest	
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Fig� � �a� Transfer characteristic� time�averaged circulating current �see text� Is�I� vs�
applied �ux �ex for � � ���� �b� Contour plot showing theoretically predicted output SNR
�taken at target signal frequency�	 in the oscillatory solutions regime	 vs� bias parameters
�bias and J � SNR scale �black�to�white� corresponds to ��� dB to 
� dB	 with contour lines
spaced � dB apart� SNR values of ��� dB or less are represented by black� a �speckled�
appearance in the black regions of the � � ��� plot is due to limited numerical precision�
�After Ref� �����

The voltage regime is characterized by an imbalance in the current conservation
relations ��� " the bias current Ib is no longer supported by the junction supercurrents
and an ohmic current 
ows through the loop	 The critical point at which this occurs
is a saddle�node bifurcation characterized by the appearance of points of in
ection in
the potential function U 	 Past this critical point� the solutions for the phase angles
�i are oscillatory ������� with the oscillation frequency typically being extremely high�
this leads one to measure the time�averaged circulating current in experiments	 The
oscillations have zero frequency at the critical point and are typically nonsinusoidal�
having the form of relaxation oscillations� this is readily apparent when one visualizes
the system as a particle rolling down the potential walls	 As each point of in
ection
is encountered� the particle undergoes a deceleration� followed by acceleration down
the ensuing potential wall� until it arrives at the next �bottleneck�	 As the SQUID is
biased farther into the running regime� the points of in
ection give way to ramps �the
curvature increases at the point of in
ection�� and the particle velocity through the
bottleneck increases� even though it still undergoes a slowing down there	 Hence� the
oscillations become increasingly sinusoidal as we get deeper into the running regime	
Our recent experiments and computations ����� show that the best response to an input
signal �in the presence of a background noise 
oor� is obtained just past the bifurcation
point� where one observes a very sensitive dependence of the solutions on the input� the
high gain regime	 Although various aspects of the oscillations have been analysed �����
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it is of interest to compute the frequency of the oscillations and the frequency scaling
in terms of the control parameter �distance� from the singular point	 Quantifying
small changes in the frequency that occur in the presence of external �target� signals
could a�ord a detection mechanism� and experiments involving synchronization to
an external signal or to another SQUID would inevitably bene
t from an a priori

knowledge of the oscillation frequency in terms of the bias parameters	
Our calculation is made possible by the fact that close to the singular point there is

a well�de
ned separation of time�scales that permits a center manifold reduction of the
e�ective phase space	 This renders the dynamics accessible to analytic computation
close to the onset of the bifurcation	 We start with the dynamics ��� in the absence
of signals and noise� re�written in terms of the sum and di�erence variables # �
��� ! ������ � � ��� � ������ with the result �letting a � ��ex��

�� � � �

�
�� � a�� cos# sin �

�# � J � cos � sin#�

���

We assume the dc 
ux bias a to be 
xed at some nonzero value and let Jc be the critical
value of J � at this value� the dynamics ��� are poised on the brink of the bifurcation�
and the left hand side can be set equal to zero to solve for the critical values �#�� ���	
We then Taylor expand around these 
xed points� � � �� ! x�# � #� ! y� with
jxj� jyj � �	 To quadratic order�

�x � �
�
�

�
!A

�
x!By ! Cx� ! �Dxy ! Cy� !O���

�y � �Ay !Bx!Dy� ! �Cxy !Dx� !O����

����

where A � cos#� cos ��� B � sin �� sin#�� C � �

�
sin �� cos#�� and D � �

�
cos �� sin#��

and O��� represents terms of cubic order and smaller	 At the bifurcation point� there
is one non�vanishing eigenvalue 	 of the linear portion of the dynamics	 Introducing
the transformation S that diagonalizes the linear part DF we have

S

�
x
y

�
�

�
u
v

�
� S �

�
cos 
 sin 

� sin 
 cos 


�
����

and

S DF S�� �

�
	 �
� �

�
� DF �

������ �A B
B A

�
� ����

where 	 � ���� � � cos#� cos ��� which must be negative so that the system orbits
are attracted to the subspace u � � on the faster �order one� timescale 	��	 In the
diagonal representation we then have�

d

dt

�
u
v

�
�

�
	 �
� �

��
u
v

�
! S

�
Cx� ! �Dxy ! Cy�

Dy� ! �Cxy !Dx�

�
� ����

The preceding steps may be repeated close to the bifurcation point �J � Jc small��
with an expansion about ����#�� Jc�� the resulting dynamics expanded to O��� is�

d

dt

�
u
v

�
� S

�
�

J � Jc

�
!

�
	 �
� �

��
u
v

�
! S

�
Cx� ! �Dxy ! Cy�

Dy� ! �Cxy !Dx�

�
� ����
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where J � Jc is O���	 It follows that �u � 	u! O���� so that the attracting subspace
is u � O���� and the evolution of v on the center manifold is given by

�v � �J � Jc� cos 
 ! �v� !O���� ����

where it remains to determine the constant �	 This is accomplished by explicitly
computing the matrix product S DF S��	 After some calculations we obtain a prod�
uct matrix having equal o��diagonal elements given by �cos 
� �sin �� sin#� cos 
 �
cos#� cos �� sin 
� � �sin 
� �sin �� sin#� sin 
 � ����� ! cos#� cos ��� cos 
�	 The o��
diagonal elements must vanish� so that we get after some manipulations�

tan �
 � �� sin �� sin#�� ����

which speci
es the transformation matrix S	 We then explicitly carry out the trans�
formation to the �u � v� representation ����� with �x� y� expressed in terms of �u� v�
by the inverse transformation��

x
y

�
� S��

�
u
v

�
�

�
cos 
 � sin 

sin 
 cos 


��
u
v

�
� ����

after which we substitute for �x� y� in the O��� part of ����	 We can identify ��

� � � sin 
 �C �D sin �
� ! cos 
�D � C sin �
� �

which completes the normal form ����	
We are now in a position to integrate the normal form ���� analytically� this rep�

resents the dominant part �i	e	 the passage through the �bottleneck� where the accel�
eration is the smallest� as explained earlier� of the SQUID dynamics	 The integration
yields�

v�t� �

r
F

�
tan

�p
F�t

�
� F � �J � Jc� cos 
� ����

whence the period T of the oscillations is readily written down as

T �
�p

��J � Jc� cos 

� ����

Equation ���� conforms to the period scaling law that accompanies bifurcations of
this type ����	 We reiterate that the oscillations are not sinusoidal near the critical
point� but approach sinusoidal behavior deep in the running regime� when �ex � ����
the oscillations become most closely sinusoidal� and the average circulating current
vanishes �Fig	 �a�	 We note� also� that the dc bias 
ux �ex could easily have been
used as the control parameter �for constant bias current J� with an analogous scal�
ing law for the spontaneous oscillations	 In fact� in laboratory settings and practical
applications� the device can be biased either via the current or 
ux input� with en�
gineering considerations �e	g	 impedance matching constraints that depend strongly
on the input frequency� often determining which method is preferred	 In all cases�
the non�sinusoidal nature of the oscillations near the critical point can have some
interesting consequences� we now provide a brief overview of some of this behavior	
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Fig� � Output PSD for external �ux�bias �visible as sharp peak on extreme left of PSD�
at low frequency� Flux amplitude q � ������
 �row ��	 and ������
 �row ��� Noise intensity
�D �see text�� 
�
 � ���� �column ��	 and 
�
 � ���� �column ��� �ex � ���� Broad peaks
correspond to harmonics of the intrinsic oscillation frequency� Combination tones arising
through nonlinear mixing of external and running frequencies are clearly visible� increasing
the noise broadens and suppresses the peaks �see text��

��� Near the Critical Point in the Oscillatory Regime� a Sampling of Cooperative

Behavior

In the preceding subsection we have derived the period of the spontaneous oscillations
in the SQUID response just past the saddle�node bifurcation	 Clearly� this represents
an intrinsic �deterministic� time�scale in the system	 One might expect a plethora of
cooperative �and noise�mediated� behavior when the SQUID is externally biased with
periodic signals having frequencies at or near the spontaneous oscillation frequency	
In fact� such behavior should be expected of all the systems that display the class of
dynamics considered in this work� we now display two examples of such behavior	

First we note that when applying an external bias q sin��st�� we can inductively
couple it into the loop with the dc bias 
ux �ex� or we may apply it as a current added
to the bias current J 	 We consider both these situations here� in addition� we assume
that the two junctions generate white Gaussian �thermal� noise� taken to have the
same intensity �D for each junction� but uncorrelated� that enters the dynamics ��� as
an additional term

p
�D
i�t� to the bias current Ib� where 
�t� is zero�mean Gaussian

noise having an autocorrelation h
i�t�
i�t��i � ��t� t��	
In Fig	 � we compute the output power spectral density �the Fourier transform

of the autocorrelation function of the circulating current Is�� via direct simulation
of the original dynamics ���	 The SQUID is biased at the dc 
ux value �ex � ���
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Fig� � Output PSD with external current bias at the running frequency f � T��� Signal
amplitudes q � ������ �row ��	 and ������ �row ��� Noise intensity 
�
� ����	 �ex � ������
Increasing the signal amplitude leads to lowering of noise background in the output around
the running frequency as well as near dc� this is displayed in column � as a change in the
output power relative to zero signal case�

corresponding to a symmetric transfer characteristic �see Fig	 ��	 Hence� the intrinsic
oscillations produce �non�delta function� peaks at the odd harmonics of the fundamen�
tal frequency� in the absence of external signals	 An external signal is 
ux�coupled into
the device� producing peaks at the combination frequencies jn�s � ��m�T j	 Increas�
ing the external signal amplitude causes more of these combination tones to be visible
above the noise background �see the 
rst column in Fig	 ��	 Previous research ����
would indicate a stochastic resonance e�ect at every combination frequency� with the
maximal response �quanti
ed via an output SNR� for example� occurring at a di�erent
critical noise intensity for each frequency	 While we do not consider this e�ect here�
our results do indicate �column two� the e�ects of increasing the noise intensity	 Note
the dramatic lowering �even suppression� of all the peaks� as evidenced by the change
in the vertical scales in column two �for the larger noise intensity�	

The e�ect of applying an external signal via a current bias is shown in Fig	 �	
As before� we include a noise source in our simulations of the coupled equations ����
and examine the output PSD for two signal amplitudes	 The signal amplitudes are
small enough that the dynamics of the noise�free system� while con
ned to a small
region near the critical point� are not allowed to cross over into the running regime
�to the left of the bifurcation point in Fig	 ��� although the noise can cause occasional
transitions with a transition probability that depends on its intensity	 Once again�
one observes broad peaks at the running solution frequency	 However� with the signal
frequency chosen to be the same as the running frequency� one obtains phase locking
of the internal oscillations to the signal� the locking is characterized by the appearance
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of sharp lines superimposed on the broad peaks� with a concommittant lowering of the
noise 
oor near dc and the running frequency �second column in Fig	 ��	 Analogous
e�ects are observed when the signal is injected at some detuned �with respect to T���
frequency� and also when it is injected as a 
ux� rather than a bias current	 This noise�
quenching� which is particularly pronounced at low frequencies� is a generic feature
of nonlinear systems which undergo a frequency locking transition ����	 We are now
studying this e�ect as a possible practical means of reducing the background noise
in nonlinear devices that admit intrinsic oscillations	 An a priori knowledge of the
intrinsic oscillation frequency ���� is quite bene
cial when optimizing these devices
for speci
c operations	
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